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Abstract. Analytic results are obtained for Zhang’s singular interface equationut = uxx +
ln |ux |. We examine in detail travelling wave solutionsu(x − λt) and self-similar solutions of
the formu = tg( x√

t
)+ f (t). There are solutions withux = 0 at some points whereuxx blows

up. For general initial data these solutions seem to play the role of intermediate asymptotics.

1. Introduction

The roughening of initially smooth interfaces has recently attracted great interest. As was
shown by Kardar, Parisi and Zhang a relatively simple nonlinear partial differential equation
with a stochastic term could successfully be used to describe the major features of the process
of roughening in a wide class of surface growth phenomena [1]. Under some conditions,
however, the apparently stochastic development of the interface is not due to an external
noise, but is a result of an underlying instability. Thus, a possible alternative description
of rough surface growth can be based on simpledeterministicpartial differential equations
containing a singular or unstable term. A well known example of this type is the Kuramoto–
Sivashinsky equation [2] where an unstable Laplacian term is balanced by a stabilizing term
of a higher order,−14u, resulting in a complicated spatio-temporal behaviour [3, 4]. Here
we shall consider the singular interface equation of Zhang [5], which was introduced in a
study on complex directed polymers:

ut = uxx + ln |ux | (1)

and a closely related more general equation

ut = uxx + δu2
x + ln |ux | δ > 0. (2)

These equations are interesting because they can be considered as perhaps the simplest
examples of self-sustained complex behaviour without a noise term. Thediscretizedversion
of equation (1) has been shown to exhibit an interesting scaling behaviour [5].

The finite difference version of a slightly modified form of equation (1) has
been numerically investigated for the Cauchy–Dirichlet problem with periodic boundary
conditions. Here the initial function was a nonnegative noise function withux(x, 0) = 0 at
several points [6]. These calculations (besides other results) have shown that after some time
(large t) the typical form of the solution is like the one in figure 1. In the neighbourhood
of the two local minima the solution looks like a linear function which seems to be logical
becausex and−x are solutions of equation (1). On the other hand, the function|x| is not
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Figure 1. Typical form of the numerical solution to equation (1) for some fixed (large)t which
often occurs and remains unchanged around the two minima. Since this is a sematic figure,
there is no scale on the axes. In a typical simulation the value ofx can vary between zero and a
few hundred, while the difference between the maximal and minimal value of the solution can
change in a wide range from 0.01 to 1 depending on the parameters (see [6]).

a classical solution due to a lack of smoothness at zero (‘the flux is not continuous’). It is
easy to see that|x| is not a weak solution either (see the definition in the next section).

Our results show the existence of special solutions, namely travelling waves (TW) and
self-similar solutions which have continuous first derivatives at singular points, consequently
they are solutions in the weak sense. Some of our special solutions have linear asymptotics,
therefore they look like the numerical solution (in figure 1) in the neighbourhood of the
two minima. The natural conclusion is that these solutions are good candidates for being
intermediate asymptotics [7].

In the next section we give a complete picture of TW solutions to equations (1) and (2).
Basically there are two types of such solutions: for the first oneux never becomes zero,
while for the second oneux will be zero at some points. The second-type solutions have
linear asymptotics for largex and fixedt and at the singular points whereux = 0 their first
derivatives are continuous (unlike the function|x|). However, they do not have bounded
second derivatives (uxx blows up at the singular points).

In the final section we present an ‘almost explicit’ self-similar-type solution to
equation (1). At the points whereux = 0 it behaves exactly like the corresponding TW
solutions but for largex (t fixed) it is like x2.

2. Travelling waves

We shall see thatu(x, t) has no continuous second derivative with respect tox at the points
whereux = 0. In the neighbourhood of such points we indicate in what sense the solutions
u(x, t) satisfy equations (1) and (2). This is the usual definition of weak solutions in the
theory of nonlinear partial differential equations [8]. Identity (3) is the result of multiplying
(2) by ϕ(x, t) and the formal integration by parts.

Definition. We shall say thatu(x, t) is a weak solutionto equation (2) if the integral
identity ∫ x1

x0

uϕ

∣∣∣∣t1
t0

dx =
∫ x1

x0

∫ t1

t0

(uϕt − uxϕx + δu2
xϕ + ϕ ln |ux |) dx dt (3)
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is satisfied for all rectanglesR = [x0, x1] × [t0, t1] ∈ (−∞,∞) × (0,∞) and smooth (on
R) functionsϕ(x, t) such thatϕ(x0, t) = ϕ(x1, t) = 0.

Note that this definition requires only the integrability of functionsu, ux , u2
x , ln |ux | and

does not containuxx .
The TW solution to equations (1) and (2) is a solution of the formu = g(ξ), where

ξ = x − λt andλ is a real number (speed).
The functiong(ξ) satisfies the following second-order ordinary differential equation

g′′ + λg′ + δg′2+ ln |g′| = 0. (4)

Using the substitutiong′ = f we get

f ′ + λf + δf 2+ ln |f | = 0. (5)

First, we consider the caseδ = 0 (equation (1)) which turned out to be more general
from our point of view. Then equation (5) reads

f ′ = −λf + ln
1

|f | . (6)

Here we shall study equation (6) withλ > 0 in detail; theλ < 0 case can be handled
analogously.

The roots of the nonlinear equation

−λf + ln
1

|f | = 0 (7)

determine the equilibrium points (wheref ′ = 0) of (6) .

Remark 1.If the constantsfi are equilibrium points of (6) then the linear functions
u = fi(x − λt) will be TW solutions to equation (1).

In the following we shall consider the nontrivial TW solutions to (1).

Remark 2.In each interval not containing any of the equilibrium points, the function

F(f ) :=
∫ f ds

ln 1
|s| − λs

= ξ (8)

is strictly monotone (increasing or decreasing). So the inverse function,F−1, exists in this
interval and the solution to equation (6) is the function

f (ξ) = F−1(ξ)

which gives us the solution to (1):

u = g(ξ) =
∫
f (ξ) dξ + c c is a constant.

Let λ0 = e−1, (ln e = 1). Depending on the speed of the travelling waveλ, we shall
have three different cases.

I. If 0 < λ < λ0 then equation (6) has three equilibrium points. Namely equation (7)
has exactly three roots:f0, f1, f2, where 0< f0 < 1, f1 < −1 andf2 < f1.

II. If λ = λ0 then equation (7) has two roots:f0, f1, where 0< f0 < 1, f1 = −e.
III. If λ > λ0 then we have only one equilibrium point 0< f0 < 1.

Case I: 0 < lλ < λ0. Here equation (6) has four different solutions separated by
equilibrium solutionsfi (i = 0, 1, 2). The solution betweenf1 and f0, is the only one
which becomes zero at one point. Becausef = g′ = ux , the original equation (1) is
genuinely singular there.
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Figure 2. FunctionF ′(f ) used to constructu(x − λt), the TW solutions of equation (1) in the
case where 0< λ < λ0.

In the following we construct TW solutions by using functionF(f ) of (8) as described
in remark 2. The starting point of our proof is the functionF ′(f ) (see figure 2).

(i) −∞ < f < f2. In this intervalF ′ > 0, F ′ → +∞ when f ↗ f2 andF ′ ↘ 0
whenf →−∞. The function,F , is strictly monotone increasing,F →+∞ if f ↗ f2 as
− ln |f − f2| andF → −∞ for f → −∞ as− ln(−f ). Consequently, the functionf (ξ)
for large ξ > 0 behaves like−e−ξ + f2, for large negativeξ such as−e−ξ . Integration
gives the functionu = g1(ξ) which has asymptotef2ξ if ξ →+∞ and is likee−ξ for large
negativeξ .

(ii) f 0 < f < +∞. HereF ′ < 0, F is strictly decreasing,F ∼ − ln |f −f0| if f ↘ f0,
andF behaves like− ln f for largef .

Hereaftera(x) ∼ b(x) means that limx→0
a(x)

b(x)
= c, wherec is a positive constant.

The functionf (ξ) decreases from∞ to f0 and globally behaves likee−ξ + f0. The
corresponding solution,u = g2(ξ), hasf0ξ as its asymptote for large positiveξ and behaves
like −e−ξ for large negativeξ . Thus, basically,g2 looks like−g1(ξ).

(iii) f2 < f < f1 < −1. In this case, as it is easy to see, we have a bounded negative
f (ξ) such thatf (−∞) = f1 andf (+∞) = f2. Thus,u = g3(ξ) is like a hyperbole with
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Figure 3. Travelling wavesolutions (u = g1(ξ) is denoted by —· —, u = g2(ξ) is – – –, while
u = g3(ξ) is +++, ξ = x − λt) of equation (1) for the case whenux never turns to zero.

asymptotesf1ξ for large negativeξ andf2ξ for ξ →+∞.
The TW solutions,g1(ξ), g2(ξ), g3(ξ) for which ux never turns to zero, are presented

in figure 3.
(iv) f1 < f < f0. This is the first important case: the derivative of the corresponding

solution becomes zero at some point (without a loss of generality, we can suppose that it
happens at the originx = 0).

In the interval(f1, f0) the functionF ′(f ) is nonnegative,F ′(0) = 0 andF ′′(±0) =
±∞. In the neighbourhood off0 and f1 the functionF ′ behaves like|f − fi |−1. The
function F is strictly monotone increasing,F → −∞ if f → f1 and F → +∞ for
f → f0. Consequently, the functionu = g4(ξ) decreases to zero and is increasing from
zero. It is a nonnegative hyperbole-like function with asymptotesf1ξ − ξ0 from the left and
f0ξ − ξ1 from right, ξi > 0, see figure 4.

The functionF ′(f ) for small f behaves like(ln 1
|f | )
−1, thusF(f ) ∼ f (ln 1

|f | )
−1. It is

easy to see thatf (ξ) ∼ |ξ | ln 1
|ξ | for small |ξ |, so

g4(ξ) ∼ ξ2 ln
1

|ξ | for small ξ.

One can see that the second derivative ofg4(ξ) at zero is not continuous:g′′4(ξ) ∼ ln 1
|ξ | →+∞ when|ξ | → 0. In contrast to (1), identity (3) does not containuxx and all the integrals

in (3) exist except, possibly, the last one
∫
ϕ ln |ux | dx. If ϕ = 1 in theε-neighbourhood of

zero (we suppose thatux = 0 at zero), then the convergence of this integral is equivalent
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Figure 4. Travelling wave solution of equation (1) whenux = 0 at some point (without loss of
generality we suppose thatu = 0 at x = 0, for fixed t). It has the cusp-like form similar to the
ones obtained by numerical solutions (compare with figure 1).

to the convergence of
∫ ε
−ε ln

(
|x| ln 1

|x|
)

dx. However,∣∣∣∣ln(|x| ln 1

|x|
)∣∣∣∣ 6 | ln |x|| + ∣∣∣∣ ln ln

1

|x|
∣∣∣∣ 6 c| ln |x||

which is integrable at zero.

Case IIλ = λ0. Equation (7) has two zeros:f0 ∈ (0, 1) and f1 = −e. The function
F ′(f ) is the same as in figure 2 withf2 = f1. Thus, we have three travelling waves which
behave qualitatively likeg1, g2 andg4 from the previous case.

Case III λ > λ0. The travelling wave corresponding tof > f0 is like g2. Let us now
assume thatf < f0. The functionF ′(f ) in the interval [−ε, f0), ε > 0 behaves likeF ′(f )
in figure 2, but decreases to zero whenf →−∞ like − 1

f
having a maximum at some point

f3 < −ε. The corresponding solution,u = g5(ξ), behaves likeg4 in the neighbourhood of
zero, while for large positiveξ it has a linear asymptotef0ξ − ξ0 and for large negativeξ
behaves likee−ξ .

In the caseλ = 0 (stationary TW) we haveF ′(f ) = − 1
ln |f | . Here there are two

equilibria f0 = 1, f1 = −1. The travelling wave betweenf1 < f < f0 is qualitatively the
same asg4 while for f0 < f the solution is likeg2.

Whenf < −1 the TW solutionu = g6(ξ) is a strictly monotone decreasing function
havingξ as an asymptote for large negativeξ and behaves likeξ2 ln 1

ξ
for large positiveξ .

The caseδ > 0 (equation (2)),λ > 0 is qualitatively the same as the previous one
(δ = λ = 0): one has two equilibria,f3 andf4, such thatf4 < 0< f3 < 1.

Remark 3.In order to make the effect caused by the ln term in equation (1) more transparent,
it is worth comparing the TW solutions of (1) with the TW solutions of the heat equation.
Equationut = uxx has two independent positive TW solutionsex+t ande−(x−t). Consider
the first one: It grows (decays) exponentially whenx →+∞ (x →−∞). The term ln|ux |
is a source term for|ux | > 1 and plays the role of an absorber for|ux | < 1 and changes
the behaviour of the solution in a nonsymmetric way. For instance, let us take the TW
solutiong4(ξ) from case I wheref0 ∈ (0, 1) andf1 < −1. For large negativeξ one has
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|ux | ∼ |f1| > 1 consequently ln|ux | is a source and instead of exponential decay one gets
linear growth:u ∼ f1x. For large positivex we have|ux | ∼ |f0| < 1 and the exponential
growth is replaced by the linear one.

3. Self-similar-type solutions

This section deals with a self-similar-type solution to equation (1) and describes its
geometrical properties. This solution will have the form

u(x, t) = (t + t0)αg
(

x

(t + t0)β
)
+ f (t) (9)

where the functionsg(ξ), f (t) and the positive constantsα, β are to be determined.
Formula (9) expresses theself-similar nature of the solution, or can be regarded as

solution with dynamic scaling. Here we refer to dynamic scaling because equation (9) has a
form which is analogous to the scaling behaviour of self-affine growing surfaces (see, e.g.
[9, equation (7.19)]) whose properties can be described in terms of dynamic scaling.

Theorem. Let g(ξ) be the solution of the generalized Weber equation

g(ξ)− 1
2ξg
′(ξ) = g′′(ξ)+ ln |g′(ξ)|. (10)

Then
(1) the function

u(x, t) = (t + t0)[g(ξ)+ 1
2(ln(t + t0)− 1)] ξ = x√

(t + t0)
satisfies equation

ut = uxx + ln |ux |.
(2) Functiong(ξ) has the following geometrical properties
(i) g(ξ) is monotonously increasing forξ > 0 andg(ξ) is monotonously decreasing for

ξ < 0,
(ii) g(ξ) ∼ ξ2 ln 1

|ξ | , for small |ξ |,
(iii) g(ξ) ∼ ξ2, for large|ξ |.

Remark 4.We see thatg(ξ ) is roughlyξ2 (we suppose, as before, thatg(0) = 0). The only
important difference is the nonsmoothness ofg at zero: the second derivative blows up at
ξ = 0. The next to leading-order term in (ii) is|ξ3| ln 1

|ξ | .

Remark 5.It follows from (10) that ifg(ξ) is a solution thenh(ξ) = g(−ξ) also satisfies
(10). Sinceg ≡ constant is not a solution, it is possible to show, that forξ > 0 the initial
value problem for (10) withg(0) = 0, g′(0) = 0 has a unique global solutiong = g+(ξ).
For ξ < 0 we setg = g+(−ξ). At the point ξ = 0 the functiong(ξ) is not necessarily
smooth (g′′(0) can blow up) but we can understand equality (10) in the neighbourhood of
ξ = 0 in a weak sense, as in the definition of the weak solution for (1).

Proof of equation (1). Substitution into (1) gives

α(t + t0)α−1g(ξ)− β(t + t0)α−1ξg′(ξ)+ f ′(t) = (t + t0)α−2βg′′

+ ln |(t + t0)α−βg′(ξ)| = (t + t0)α−2βg′′ + (α − β) ln |(t + t0)| + ln |g′(ξ)|.
Now, one can see that if we take

f (t) = 1
2(t + t0)[ln(t + t0)− 1] t0 > e, α = 1 andβ = 1

2

u(x, t) will be a solution to (1) provided thatg(ξ) satisfies equation (10). �
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Proof of equation (2).
(i) It is sufficient to show thatg′(ξ) > 0 for ξ > 0.
In fact, suppose thatξ1 is the first value whereg′(ξ) is zero. Let us takeξ2 = ξ1−ε > 0,

whereε is a small positive number. One hasg′′(ξ2) < 0 and ln|g′(ξ)| is a large negative
number. However, in the same neighbourhood the left-hand side of (10) is positive. So
g′(ξ) > 0 for ξ > 0.

(ii) We can see from (10) that the behaviour ofg(ξ) in the right neigbourhood ofξ = 0
(ξ > 0) is controlled by the equation

g′′1(ξ)+ ln |g′1(ξ)| = 0.

By settingg′1(ξ) = y(ξ), one has

y ′(ξ)+ ln |y(ξ)| = 0

from which we havey(ξ) ∼ ξ ln 1
ξ
, for ξ ∈ (0, ε), ε > 0 is small, so

g1(ξ) ∼ g(ξ) ∼ ξ2 ln
1

ξ
for ξ ∈ (0, ε).

Thus,g(ξ) at ξ = 0 (whereg′ = 0) behaves likeξ2 ln 1
|ξ | , which means thatu(x, t) is like

x2 ln 1
|x| for fixed t at x = 0 (whereux = 0). This proves (ii).

(iii) First we show thatg(ξ) is at least power-like at infinity. Suppose the contrary:

g(ξ)

ξ ε
→ 0 for all ε > 0 (11)

i.e. thatg(ξ) grows slower than any power ofξ . In that case, because of the monotonicity
of g, we haveg′(ξ)→ 0 asξ →∞. Indeed, ifg′(ξ) > c > 0 for ξ > ξ0 then integration
gives g > cξ which contradicts (11). But ifg′(ξ) → 0, then the right-hand side of (10)
goes to minus infinity. The only term of (10) which is able to balance it, is− 1

2 ξ g
′,

consequentlyg′(ξ) ∼ 2
ξ

ln ξ for large ξ and g ∼ (ln ξ)2. Substituting this into (10) and
taking ξ large enough we obtain a contradiction.

Substitutiong(ξ) = ξα into equation (10) gives

ξα − α
2
ξα = α(α − 1)ξα−2+ ln |αξα−1|

which is true in the limitξ → ∞ provided thatα = 2. For a more exact result, suppose
thatg has the formg = ξ2h(ξ) where limξ→∞ h(ξ)

ξε
= 0 for all ε > 0. Substitution into (10)

leads to the equation

−1

2
ξh′ = h′′ + 2h

ξ2
+ 4h′

ξ
+ 1

ξ2
ln |2ξh+ ξ2h′|

from which we can see that the behaviour ofh(ξ) at infinity is controlled by the equation

− 1
2ξh

′ = h′′

having the explicit solutionh(ξ) = ∫ ξ0 e−τ
2/4 dτ with h(+∞) = constant. �

Acknowledgments

We thank T Vicsek and the referee for their many helpful remarks. This work was supported
in part by the US–Hungarian Joint Fund contract no 352, by the French–Hungarian Balaton
project, and by the Hungarian Research Foundation grant no T16423.



Travelling waves and dynamic scaling 2465

References

[1] Halpin-Healy T and Zhang Y-C 1995Phys. Rep254 215
[2] Kuramoto Y 1984Chemical Oscillations, Waves and Turbulence(Berlin: Springer)
[3] L’vo v V S and Procaccia I 1992Phys. Rev. Lett.69 3543
[4] Procaccia Iet al 1992Phys. Rev.E 46 3220
[5] Zhang Y-C 1992J. Physique2 2175
[6] Vicsek M and Vicsek T 1995J. Phys. A: Math. Gen.28 L311
[7] Barenblatt G I 1987Dimensional Analysis(New York: Gordon and Breach)
[8] Ladyzhenskaya O A, Solonnikov V A and Ural’ceva N N 1968Linear and Quasilinear Equation of Parabolic

Type(Providence, RI: American Mathematical Society)
[9] Vicsek T 1993Fractal Growth Phenomena(Singapore: World Scientific)


